skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tierney, Kiernan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Sampling of stable isotopes in plant xylem water (δ2H, δ18O) has become a ubiquitous technique to study spatiotemporal variations in the water taken up by plant roots; however, open questions remain concerning the most appropriate time of day to sample trees to obtain representative xylem water isotopic values (δXYLEM). We sampled the δXYLEMof oak and maple trees prior to solar midday (i.e., in a recommended sampling window) and then again after solar midday (i.e., outside of the recommended window) across 4 months. The paired root mean squared difference between AM and PM δ18O ranged from 1.00‰ to 1.16‰ for maples and 0.23‰ to 2.55‰ for oaks across all sampling dates. Xylem water seasonal origin index (SOI) values derived from AM and PM δXYLEMsamples were significantly different, though both SOI estimates supported the conclusion that maple and oak δXYLEMreflected summer precipitation on all sampling dates. We conclude that sampling time of day is a significant consideration in the design of δXYLEMsampling campaigns; however, our findings also support flexibility in the collection time of δXYLEMin field sites where sampling during the optimal time of day is challenging. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026